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Abstract:  Mining of frequent item sets is one of the most fundamental problems in data mining applications. A typical 

example is Market Basket analysis. In this method or approach it examines the buying habits of the customers by 

identifying the frequent items purchased by the customers in their baskets. This helps to increase in the sales of a 

particular product. This paper mainly focuses on the study of the existing data mining algorithm for Market Basket 

data. DCIP algorithm uses data-set condensing and intersection pruning to find the maximal frequent item set. The 

condensing process is performed by deleting items in infrequent 1-itemset and merging duplicate transactions 

repeatedly; the pruning process is performed by generating intersections of transactions and deleting unneeded subsets 

recursively. This algorithm differs from all classical maximal frequent item set discovering algorithms; experiments 

show that this algorithm is valid with moderate efficiency; it is also easy to code for use in KDD applications. 
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I. INTRODUCTION 
 Association rules can be mined and this process 
of mining the association rules is one of the most 
important and powerful aspect of data mining. One of the 
main criteria of ARM is to find the relationship among 
various items in a database. An association rule is of the 
form A→B where A is the antecedent and B is the 
Consequent. and here A and B are item sets and the 
underlying rule says us purchased by the customers who 
purchase A are likely to purchase B with a probability 
percentage factor as %C where C is known as confidence 
such a rule is as follows:  
“Seventy per cent of people who purchase beer will also 
like to purchase diapers” This helps the shop managers to 
study the behavior or buying habits of the customers to 
increase the sales. Based on this study items that are 
regularly purchased by the customers are put under closed 
proximity. For example persons who purchase milk will 
also likely to purchase Bread.  
The interestingness measures like support and confidence 
also plays a vital role in the association analysis. The 
support is defined as percentage of transactions that 
contained in the rule and is given by Support = (# of 
transactions involving A and B) / (total number of 
transactions). The other factor is confidence it is the 
percentage of transactions that contain B if they contain A 
Confidence = Probability (B if A) =  P (B/A) 
 
Confidence = (# of transactions involving A and B) / 
(total number of transactions that have A).  
Consider the following example as 

Customer 
Item 

Purchased 
Item 

Purchased 

1 Burger Coke 

2 puff Mineral water 

3 Burger Mineral water 

4 Puff Tea 
 

 
 

If A is “purchased Burger “and B is “purchased mineral 
water” then 
 

Support=P (A and B) =1/4  
Confidence=P (B/A) =1/2 
 
Item sets that satisfy minimum support and minimum 
confidence are called strong association rules. 
 

II. RELATED WORK 
 
PRELIMINARIES 

First we provide some useful definitions  
Let product set {puff, tea, soda, pizza, beer, burger, 
mineral water ,salad, coke, ice-cream} are represented as 
{I1,I2,I3,I4.I5,I6,I7,I8,I9,I10} respectively. 
 

Boolean database 
Let D = {t1 . . . tN} be a collection of Boolean tuples over 
the product={a1 . . . aM}, where each tuple t is a bit-vector 
where a 0 implies the absence of a product in the basket 
and a 1 implies the presence of a product in the basket. 
 

Table 1: Database 

ID Items 

01 I1, I2, I4, I5, I7 

02 I1, I2, I5, I6, I7 

03 I10, I3, I5, I7 

04 I10, I3, I8 

05 I1, I2, I3, I4, I7 

06 I2, I3, I7, I8 

07 I3, I6, I9 

08 I1, I3, I5, I9 

09 I1, I2, I6 

10 I3, I4, I8, I9 
 

III. PROPOSED TECHNIQUE: DCIP ALGORITHM 
 

The first step of DCIP algorithm is to reduce the length of 

itemsets and the volume of data-set.  
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According to Lemma 1, any maximal frequent itemset is 

also a maximal frequent itemset corresponding to one 

transaction in D, so find all maximal frequent itemsets 

correspond to every transaction through intersection 

pruning, merge them into one set (denoted as FS 

hereinafter), then delete all infrequent maximal itemset in 

FS, and the remaining set is maximal frequent itemset. The 

two main processes are described as follows. 
  
A. Condensing the Data-set  
This process first sorts the data-set with descending order 
according to the length of its itemsets, then moves those 
high-dimensional transactions whose support are bigger 
than minimal support threshold to a frequent itemset, and 
deletes all subsets of those transactions to condense the 
data-set. These steps are as follows:  
Step 1: Scan the data-set, finding all frequent 1-itemset; 
Step 2: Scan the data-set, deleting all items infrequent 1-

itemset from all transactions; then add up identical 
transactions(i.e., if transaction T1=T2, let support(T1) 
=support(T1) + support(T2), and delete T2 from data-
sets). Sorting the data-set descendingly according to the 
length of itemsets to form a new data-set which we 
denote as C;  

Step 3: Process every transaction Ti in C whose support 
are bigger than minimal support threshold: move  
Ti to FS and delete all Tj (Tj ⊂Ti, j>i);  

Step 4: Delete non-MFI from FS;  

Step 5: End. 
 

B. Intersection Pruning 
Any maximal frequent itemset is also the maximal 
frequent itemset corresponding to a certain transaction in 
D; merge all maximal frequent itemset corresponding to 
every transaction into one set (which we denote as FS), 

then delete all non-frequent maximal itemsets in FS, and 
the remaining set is the maximal frequent itemset. These 
steps are as follows:  
Assume we have a data-set denoted as D, and the minimal 
support threshold is S. 
Step 1: Condense data-set D using the method described in 

3.1; if |D|<S, terminate the processing for the current 
data-set;  

Step 2: Find intersection of T1 and Ti(1<i≤n); merge all 

intersections into a new data-set D1; establish the 

vertical data format of D; delete transaction Ti (Ti ⊂T1); 

if |D1| ≥ S, then go to step 1 to perform another 

intersection pruning circle for D1; 
Step 3: Use the vertical data format of D to find the 

intersection of Tj and Ti (j=2, 3, 4, ..., m<n; j<i≤n), 

merge all intersections into a new data-set D1, go to step 

1 to perform another intersection pruning circle for D1; 

when the volume of the remaining data-set is less than 

S, stop finding intersections of Tj and Ti, terminate the 

process for current data-set.  
Step 4: End; 
 

Note: Data-set condensing can be performed at the 
beginning of the intersection pruning process, as well as in 
the process of step 3. 
 

C. Instance Analysis  
The following example shows how to discover MFI using 

DCIP for transaction database D (Table I) with minimum 
support threshold as 4 (i.e., minsup=4). 
 

TABLE I: TRANSACTION DATA-SET D 

TID Items 

01 I1, I2, I4, I5, I7 

02 I1, I2, I5, I6, I7 

03 I10, I3, I5, I7 

04 I10, I3, I8 

05 I1, I2, I3, I4, I7 

06 I2, I3, I7, I8 

07 I3, I6, I9 

08 I1, I3, I5, I9 

09 I1, I2, I6 

10 I3, I4, I8, I9 
 

Step 1: Condense transaction data-set D using the method 
in 3.1, the result is shown in Table II; 

 

TABLE II: RESULT OF CONDENSED D 

TID Items Count del 

1 I1,I2,I5,I7 2  

2 I1,I2,I3,I7 1  

3 I3,I5,I7 1  

4 I2,I3,I7 1 1 

5 I1,I3,I5 1  

6 I1,I2 1 1 
 

Attribute Count is the count of corresponding transactions; 
attribute del indicate whether the corresponding 
transaction can be ignored in later processing, for 
example, after step 2, T6 can be ignored.  
Step 2: Find intersections of T1 and T i (i=2, 3... 7), merge 
all intersections into data-set D1, as shown in Table III: 
 

TABLE III: INTERSECTION DATA-SET FOR T1 IN TABLE II 
 

TID items Count del 

1 I1,I2,I7 1(+2)  

2 I5,I7 1(+2)  

3 I2,I7 1(+2) 1 

4 I1,I5 1(+2)  

5 I1,I2 1(+2) 1 
 

Establish vertical data format for D; because in Table II, 

T6 ⊂ T1, T6.del=1 (see Table II) . The (+2) for attribute 

Count in table III is the count of T1 in Table II.  
 

Step 3: Condense the data-sets in Table III; as this 
example, the result remains no change.  
 

Step 4: Find intersections of T1 and Ti (i=2, 3, 4, 5) in 
Table III respectively, merge them into a new data-set D1, 
as shown in Table IV. 
 

TABLE IV:  INTERSECTION DATA-SET FOR T1 IN TABLE III 

TID items Count del 

1 I2,I7 1(+2+1)  

2 I1,I2 1(+2+1)  

Because T3 and T5 are subset of T1 in Table III, delete T3 

and T5;  
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Step 5: Condense the data-set in Table IV, produce 

frequent itemset {{I2, I7}:4, {I1, I2}:4}; Table IV is now 

empty after condensing; 
 

Step 6: Back to Table III, T3 and T5 has been deleted, we 

only need to find the intersection of T2 and T4; but the 

length of T2 and T4 are both 2, no need to find intersection 

of them. 
 

Step 7: Back to Table II, because T6 has been deleted, we 

only need to find the intersections of T2 and Ti (i=3, 4, 5); 

merge all intersections into a new data-set D1, as shown in 

Table V. 
 

TABLE V:  INTERSECTION DATA-SET FOR T2 IN TABLE 2 

TID items Count del 

1 I3,I7 1(+1)  

2 I2,I3,I7 1(+1)  

3 I1,I3 1(+1)  

Because T4 ⊂ T2 in Table II, it should be deleted. 
 

Step 8: Condense the data-set in Table V; after 
Condensing the result is empty; 
  
Step 9: The original data- set D has 10 transactions; Table 
II shows that 30% (3 transactions) of them has been 
processed; condense again the remaining data-set in Table 
II, and the result is empty. The process ends. 
  
Step 10: Merge all resulting frequent item sets, and delete 
all non-frequent maximal item sets, the final result of MFI 
is {{I2, I7}: 4, {I1, I2}: 4}. 
  
The steps above use 14 times of intersection calculations 
for MFI; compared with other Apriori-like algorithms, its 
simplicity and efficiency is explicit.  
Note: Because the volume of the example data-set D is 
small (only 10), the above process does not include the 
utilizing of vertical data format; the reason of introducing 
vertical data format is to reduce the number of times of 
finding the intersections. 
 

IV. PERFORMANCE STUDY 

If the length of the longest transaction item set is L, the 

depth of recursive calling of the algorithm itself is less 

than L-2. The number of calculations for intersections is 

negatively correlated with support, number of deleted 

transactions, and number of duplicated transactions. This 

algorithm can also be implemented parallels for each 

transaction's maximal frequent itemset to get more 

efficiency. It is valid for both long and short frequent 

pattern mining applications; for vast volume of data-set, its 

usability retains because of the time & space cost increases 

not very drastically.  
Another advantage of DCIP algorithm is its easy 

implementation. It is coded and tested using PowerBuilder 

script language on a microcomputer with Pentium 

IV/1.80GHz CPU, 512M memory running Windows XP 

operation system. Testing dataset is extracted from a 

supermarket's sales record.3000, 5000, 10000 and 20000 

transactions are tested respectively with each record 

having 2-10 categories of commodity (the average number 

of categories is 6). Figure 1 shows the running time for 

different volume of datasets with minimum support 

threshold of 5%, 20% and 50%respectively. The bigger 

minimum support threshold, the lesser time needed for 

MFI. 
 
 

 

 

 

 

 

 

 

 

Figure 1:Performance test for multiple data-set &supports 
 

V. CONCLUSION 

DCIP provides a new and efficient algorithm for 

discovering MFI; it condenses data-set by deleting items in 

infrequent 1-itemsets and merging duplicate transactions 

repeatedly, and utilizes the intersections of (1-s)*|D|+1 

transactions with other transaction item sets to perform 

pruning; along with the discovering process, with the 

increasing of the number of deleted transactions, the 

number of times needed for calculating intersections will 

decrease rapidly. It's time & space cost increases not 

drastically when data-set volume increases, so its usability 

retains for MFI applications for high volume data-sets.  
The DCIP algorithm can be further optimized in various 
aspects, such as keep a record of all resulting intersections 
to avoid duplicated generation of identical intersections to 
further improve the efficiency of this algorithm. While the 
problems considered in this paper are novel and important 
to the area of ad hoc data exploration and retrieval, we 
observe that our specific problem definition does have 
limitations. After all, a query log is only an approximate 
surrogate of real user preferences, and moreover, in some 
applications neither the database, nor the query log may be 
available for analysis; thus, we have to make assumptions 
about the nature of the competition as well as about the 
user preferences.  
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